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Covariance Structure Analysis with
Intraclass Dependent Observations*

Li-Jen Weng** P.M. Bentler***

L. Introduction

Independence among observations is one of the basic assumptions in
covariance structure analysis. However, as was noted, for example, by
Freedman (1985), some of the individuals in a conventional cluster
sample may have known and interacted with each other. Under such
circumstances, independence is unlikely. Violation of the independence
assumption may bias the estimates. Moreover, no matter what
distributional assumptions are made for the variables, all current
statistical theory developed for covariance structure analysis requires the
assumption of independence among observations. Once independence is

questionable, the associated tests may become invalid.
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In the present study, an attempt is made to approach the problem of
dependent observations in covariance structure analysis. A dependence
structure among all the observations is assumed. To simplify the
problem, the same dependence structure is assumed for all the observed
variables.  Under the assumption of normality, the matrix normal
distribution (Arnold, 1981: 313; de Waal, 1982; Nel, 1977) gives the joint
distribution of the elements of a data matrix where both the variables and
the observations can be correlated. It is assumed throughout this research
that the data matrix follows a matrix normal distribution. The crucial
problem for covariance structure analysis is to find a consistent estimator
of the covariance matrix among the variables with the dependent effects
among observations filtered.

The present research focuses on one case. The dependent structure
studied has practical implications, especially for family, genetic, or
classroom research.  This dependence structure is block-diagonal
intraclass, implying independence among groups. Members in each
group are assumed 1o correlate equally with one another. Data collected
from twins, couples, or siblings are examples. Many researchers have
worked on the asymptotic properties of maximum likelihood estimators
(MLE's) with dependent observations (e.g., Amemiya, 1985; Bar-Shalom,
1971; Bhat, 1974; Crowder, 1976; Heijmans & Magnus, 1986a, 1986b,
1986¢; Weiss, 1971, 1973). However, the study of special cases is
necessary because the published theorems are usually very general and
are not guaranteed to be easily applicable to all cases.

Amemiya (1985) presented theorems on consistency and asymptotic
normality of extremum estimators. By extremum estimators he means
"estimators obtained by either maximizing or minimizing a certain

function defined over the parameter space." Observations are not
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required to be independent or identically distributed. These theorems are
applied to establish the consistency and the asymptotic normality of the
MLE's obtained in this study by verifying the assumed conditions.
Special attention is given to the dependence structure among observations
because not all dependence structures satisfy the sufficient conditions set
forth.

This paper is organized as follows. The notation and the matrix
normal distribution are first introduced. The asymptotic properties of the
maximum likelihood estimators are presented. A two-stage procedure is
proposed to use the MLE of the covariance matrix obtained from
dependent observations in covariance structure analysis.  Finally,
examples from simulated and real data are presented. The simulation
studies investigate the effects of ignoring dependence among
observations while the data are dependent. The real data example
analyzes the factor structure among six personality scales based on 77
couples. The implications and the limitations of the model are discussed.

Directions for future work are suggested.

I1. Notation and the Matrix Normal Distribution

The following notation, unless indicated eclsewhere, is used
throughout the paper. The n x p data matrix X represents the observed
values from a random sample of n observations on p variables. The vec
operator stacks rows of a matrix into a long column. The symbol A (X)
represents an eigenvalue of matrix X. The n x p matrix ( represents the
expected values of data matrix X. In other words, E(xU.) = Uy X= [XU]

and g =[x ) The symmetric positive definite p x p matrix X

represents the covariance matrix between the columns of the data matrix
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X (i.e., the variables). The symmetric positive definite matrix R (n x n)
with all the diagonal elements equal 1.0 represents the correlations
between rows of the data matrix X (i.e., observations). Matrix R

specifies the dependence structure among the observations.

A matrix X with a moment generating function

My(t) = exp[tr( 12 't) + 2 "tr(tRt 2],

where t is of the same order as X, is said to follow a matrix normal
distribution with parameters ¢, R, and T (Arnold, 1981). X ~ Nn.p( i,

R, ¥). The joint density function is
f(X) = 2 7 Y™P2RP? £ ["2exp{-2"tr[R(X- £ ) £ WX- )T,

-0 < x, <o, X = [x,].  The usual assumption of independent
observations leads to a special case of the above density function with R

=1, the identity matrix.

The matrix normal distribution implies that the covariance between
any two data points depends not only on the covariation between the
associated variables but also on the correlation between the observation

units. In mathematical form,

COV(X,;,X,,) = PixT s

Were p, is an element of R and o}, is an element of X (Arnold, 1981:

311). Therefore, when observations are independent as assumed in most
statistical methods, P =0 foralli # k, and data points between any two
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observation units yield zero covariance, i.e. cov(x,, X,,) =0foralli+

k. All the observations are identically distributed. The ordinary formula
for computing the sample covariance works. However, if observations
are dependent, i.e., p, # 0 for some i # k, computation of the sample
covariance matrix using the ordinary formula and ignoring the
dependence structure may yield an estimator which confounds

covariation between variables with correlation between observations.

'II1. Asymptotic Properties of the Maximum
Likelihood Estimators / and £

The dependence structure studied is block-diagonal intraclass,
implying independence among groups. Each group may consist of
different number of observations. Members in each group are assumed to
correlate equally with one another. Data collected from classrooms or
siblings are examples. Donner and Koval (1980) estimated the intraclass
correlation among siblings in univariate cases. They did not prove any
asymptotic properties of the maximum likelihood estimators where the
observations were dependent.

Let n, be the number of observations in group g, G be the total

number of groups, and n be the sum of all ns. The group size n, is

assumed to be fixed. Further, assume lim G/m= §,0< 6 <1. Let
n— o

m, be the number of groups of size k; in other words, m, = {number of g :
=k} A im ok =f, d ¥ f-
n, = 1. Assume Glgloo < "t 0<f,<lan kél f, = 1 for some

finite positive integer K, K =max n, < o . Suppose an industrial
g
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psychologist is interested in studying the working attitudes of employees.
The employees are organized into work groups of two or three. There are
an equal number of these two types of work groups. In the study, there

will be 100 samples of group size 2, and 100 samples of group size 3.
Thus n =500, G = 200, m, =100, m; =100, k=2o0r3, K=3,and in

the limit §= 0.4, and f,=1f,=0.5.

For each positive integer n, X(n) is an n X p random matrix to be

observed. Without loss of generality, X(n) is assumed to follow a matrix
normal distribution with zero means, row correlation matrix R(p), and

column covariance matrix ¥ ; X(n) ~ N, 0, R(p), X). Here R(p),
representing the dependence structure, is block-diagonal. Each n, X mn
diagonal block in R(p) has 1.0 on the diagonal and p elsewhere.
Denote the vector containing the p* distinct elements in the lower triangle
of X, as o,. Let §, =(0,, p,) be the true parameter vector of order g;

q=p* + 1, with p* = p(p + 1)/2. The total number of parameters q is
independent of the sample size n. The domain of §= (a, p), or the

parameter space ©, consists of all possible values that @ can take. o is
the vector with the p* distinct elements in the lower triangle of ¥ . The
parameter space © is a subset of gq-dimensional Euclidean space; @ =
{(o, P 4,1, < Z< A, —e<p<y, for 0<i, <A, and some
e<K'and y < 1}. For matrices A and B of the same order, A > B in the
Loewner sense of inequality, if and only if A — B is positive definite
(see, e.g., Browne, 1974: 10; Browne & Shapiro, 1988: 207; Kano &

Shapiro, 1987, Theorem 1). The definition of the parameter space
implics that the eigenvalues of ¥ are bounded between A, andA,.

Theorem. The maximum likelihood estimators of ¥ and O, g= (o,
p), under the conditions specified above are consistent and
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asymptotically normal with plim 8= #,, and Jn (@'— &)

N[0,A(8) '], Where A(8) =limEn™ (&L, / 2690

[ gy -logy —' 5§ f, k-1 129 (¢ ~vecx;!
K, (2 ®1)K, (ol T+ (k=Dpy 1-p | ° 0
1
)
K _ _
. 52&( k-1 )2+152p
ym. k>1 \Hk-Dgoy (1-p)

The matrix K, is of order p* X p*' with typiéal element

[K,lyen= 2'1(5,.g5jh +0;0,), i<p,jsp,gsh< pand g repre-
' - _ ! 1" :

sents Kronecker's delta. And K;, =(K,K,) 'K, 1sa left inverse of K,

of order p(p +1)/2 x p>. See, for example, Browne (1974).

The asymptotic variance of Jn (p— py), denoted as y(p,), is

K - K -
2p157 ka[ k-1 ]zﬁ{sz k-1 1,
k>1 [ 1+(k-Dpy k>1 ~ 1+{k-1)p

+2

1-5 K k-t 1-6 |,
1-p, K31 “1+(k-Dp, (1-p)* ]

So, an estimate of the asymptotic variance of p is given by w(p,)/n.
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Amemiya's (1985) theorem 4.1.6 on extremum estimators is applied
to prove the consistency and asymptotic normality of the MLE's of p and
2. The verification of the required conditions is given in the Appendix

for the sake of completeness.

The maximum likelihood estimator & is asymptotically efficient
because its asymptotic variance-covariance matrix reaches the Cramer-

Rao lower bound (see, e.g., Amemiya, 1985, Definition 4.2.1). The
likelihood ratio test of p, = 0 is defined as 2(F, - F, ); where F, is the

function value of the negative log-likelihood under the null hypothesis H,
of no dependence and F, is the function value under the alternative

hypothesis H, of non-zero p,. This statistic is asymptotically distributed

as a chi-square variate with 1 degree of freedom (see, e.g., Amemiya,
1985, Section 4.5.1). This test can be used to evaluate the
appropriateness of the dependence assumption among observations.

IV. A Two-Stage Procedure for Covariance
Structure Analysis

A Consistent estimator of the covariance matrix is one basic
component in covariance structure analysis. % and p in the model have
been shown to be consistent and asymptotically normal. Weng and
Bentler (1987) discussed the use of ¥ in covariance structure analysis
when the data follow a matrix normal distribution and the dependence
structure R is known. In the present research with an unknown parameter
in the dependence structure, if the sample size is sufficiently large and

one takes p at its estimated value P Fcan be uvsed in any computer

package for covariance structure analysis. Using £ instead of S in the
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analysis yields appropriate estimates. S represents the usual sample

covariance matrix estimate under independence.

A two-stage procedure is proposed for cases with sufficient sample
sizes. & and p are estimated and evaluated at the first stage. At the
second stage, covariance structure analysis is performed with an
appropriately chosen input matrix. If the result of the likelihood ratio test
indicates that p, is not significantly different from zero, observations can

be treated as independent, and the usual analysis procedures using S

~

follow. If p, is significantly different from zero, one can use ¥ in
analysis, while fixing o at 5. With p fixed at its estimate, the observed
data can be transformed to independently and identically distributed
vectors, while still preserving the original covariance matrix among the
variables.  Standard asymptotic statistical theories for covariance

structure analysis are applicable.
Suppose X follows a matrix normal distribution, N, (0, R, %), with

R =R(p). Decompose R as AA', Where A is a square matrix of order n.
The transformed matrix, Y = A™'X, is distributed as N, (0,1, X). With

p being consistent, we have R—P—>R and A—P—;»A, where
R=R(p) and A = A(p). Asympotically, Y* = A”'X has the same
distribution as Y. Note that each row in Y is independently, identically
distributed as N (0, £ ). Since the transformed data have the same
covariance matrix as the original data, analyses can be carried out by
using the transformed independent data instead of the original dependent
data. Existing programs for covariance structure analysis can be used.

Statistical theories based on the i.i.d. assumption are applicable.

The two-stage procedure has several advantages. First, one can

evaluate the degree of dependence among observations prior to any




148 (Rt Rl BF SRR )

analysis. If the degree of dependence is negligible, the data can be treated
as independent and the usual analysis procedure follows. Second, when
dependence exists among observations, with o fixed at its estimate and
with sufficient sample size, the transformation approach discussed above
is legitimate. Calculation of the sample covariance matrix among
observed variables is straightforward without the need for developing
new estimator for it. Third, as long as ¥ is obtained, any standard
package program for covariance structure analysis can be used to get
model parameter estimates and other statistics. However, when sample

size is not large enough, the transformed data may not be independently,
identically distributed because of the sampling error of p. The sampling

error of 5 may affect parameter estimates and associated standard errors,

as well as the chi-square statistics.

Alternatively, one may simultaneously estimate the intraclass
correlation and the model parameters. However, if the model is rejected
with the one-stage estimation procedure, it is difficult to detect which part
of the model breaks down. Moreover, the statistical properties of
estimators under the one-stage procedure have to be proved otherwise.
Statistical theory in covariance structure analysis under the independence
assumption is not applicable. The two-stage procedure has the advantage
of decomposing the problem into two components and examining them
separately. As long as the transformation approach is appropriate,
existing computer programs for covariance structure analysis can be used

to obtain parameter estimates and available statistical theory is applicable.
Note that 5, the MLE of p, is not the only estimator that can be used

in the two-stage procedure. Any consistent estimator is appropriate. One
may be able to obtain estimators simpler than MLE.
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V. Simulations and Example

This section presents the results from two simulation studies and one
real data analysis. The purpose of the first simulation is to compare S and
$, where S represents the usual sample covariance matrix under
independence and 3 represents the MLE of the population covariance
matrix under the assumption of a matrix normal distribution with an
intraclass dependence structure. The second simulation investigates the
effect of using S and 3 in a tow-factor analytic model. The real data
example looks into the factor structure of six personality measures on 77

couples.
(I) Simulation 1

Two cases of six variables are studied. The total sample size is fixed
at 200, which is considered acceptable for six variables. In Case I, m=2

and G=100. In Case I, m=10 and G=20,. One hundred replications were
performed for each case. The population intraclass correlation (p,)

ranges from 0.0 to 0.9. The population covariance matrix (I, ) is:

[9.000 4.410 4.410 1.323 1.323 1.323]
4.410 9.000 4.410 1.323 1.323 1.323
4.410 4.410 9.000 1.323 1323 1.323
1.323 1.323 1.323 9.000 4.410 4.410
1.323 1.323 1.323 4.410 9.000 4.410
| 1323 1.323 1323 4.410 4.410 9.000]
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Two estimators of the covariance matrix, S and ¥, are obtained. S =
X'X/(n - 1). % is obtained from the Newton-Raphson optimization

procedure (see, e.g., Fox, 1971, Section 2.10). The starting values are set
as £ =S and p = 0. The iteration stops if the sum of the absolute values

of the parameter changes is no greater than 0.001.

Table ] RMSE?ofsand &

Py 060 01 02 03 04 05 06 07 08 09
m I

2 S 0.743 0.736 0.728 0.734 0.794 0.835 0.858 0.890 0.950 0.970
2 L 0.740 0.731 0.715 0.706 0.748 0.736 0.739 0.749 0.747 0.749
10 S 0.713 0.745 0.853 0.971 1.127 1.268 1.525 1.686 1.845 2.103
10 _i:_ 0.710 0.722 0.702 0.767 0.772 0.775 0.820 0.844 0.910 0.933

a 1 100 yp j
Average RMSE(s) = —— ¥ 1Y 3(su-ay,) /p" ,and
100 =1V j=1k-1

. 1 106 jp
Average RMSE(8) = —— T | ¥ $(8,~0,,)"/p" .
100 27y . 2.0 ¥
i=1Yj=1k=1]
m = Number of observations in each group

I'= Input matrix used in the analysis

Table 1 presents the average root-mean-squared-error (RMSE) over
100 replications for S and $. The average RMSE's for & arc small and
the average RMSE of S is, in general, greater than that of 3 for any given
intraclass correlation. All the average RMSE's fall between 0.7 and 1.0

except for those of S in Case II. In Case I, the Difference between the
average RMSE's for S and ¥ is less then 0.1 for 0.0 < P2, < 0.4, and the
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difference gradually increases as p, increases. In Case II, where m

equals 10, the average RMSE's of S are much greater than those of X.
The results suggest that, when the total sample size is fixed, the
difference between S and £ increases (1) as the degree of dependence
represented by the intraclass correlation increases, and (2) as the number
of observations in each group increases or equivalently as the number of

groups decreases.

The RMSE and bias of 5 are presented in Table 2. The MLE of the

intraclass correlation under a matrix normal distribution performs quite
well with small RMSE and bias.

Table 2 RMSE® and Bias® of

m\p, 00 01 02 03 04 05 06 07 08 09
RMSE

2 0.038 0.044 0.040 0.038 0.036 0.028 0.029 0.023 0.014 0.009

10 0.014 0.023 0.032 0.034 0.033 0.034 0.040 0.034 0.024 0.013
BIAS

2 0.000 0.002 0.000 -.004 -.005 -.002 0.004 0.000 0.003 -.001

10 0.001 -.004 0.008 -.003 -.002 -.003 -003 -005 -005 0.000

100
*‘RMSE@)# (B -p) 1100 .
i=1

o X 100
Bias(2) =E(p) - p, = .le.J’lOO—po-
i=

m = Number of observations in each group

The likelihood ratio test (LRT) of the hypothesis: H,:p, = 0 versus
H,:p, # 0 is performed in each sample. The likelihood ratio test when
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H, is true has an asymptotic chi-square distribution with 1 degree of
freedom. The probability for Type I error is chosen at the @ = 0.5 level.
The average test values and the empirical power or probability of Type [
error (for p, = 0.0) of the test during the 100 replications are presented
in Table 3. The empirical power of the test is the frequency with which
H, was correctly rejected over the total number of replications. The mean
of the chi-square statistic is close to 1.0 at P,y =0, but far from 1.0 for g,
> 0. The test appears to be very powerful. In Case I with m = 2, the
empirical power of the test reaches 1.00 for 2o 20.2. In Case I with m
= 10, the empirical power of the LRT reaches 1.00 for Po 2 0.1. A power
analysis is conducted to study the theoretical power of the test. The
series of hypotheses tested are Hy:py = 0.0 versus H,:p, = 0.1, up to
0.9. For the sake of simplicity, the power analysis is based on the
asymptotic normal distribution of 5. Power = Prob (o /¢ w(p,)/n) >

3.841 | H, is true). p? /(y(py)/n) under H, is asymptotically

distributed as a non-central chi-square variate with 1 degree of freedom
and non-centrality parameter pf] /(w(py)/ n), p, =0.11t0 0.9 (see, e.g.,
Hogg & Craig, 1978, Section 8.4). The middle of Table 3 gives the
theoretical power of the test for population intraclass correlation ranging
from 0.1 to 0.9. The results of the power analysis support the high
frequency of rejection in the simulation.

Smaller sample sizes should decrease the power of the test. Another
simulation is conducted to look into the empirical power of the test with
smaller samples in comparison with theoretical power. The same setup is
used except for the sample size. In this case, the sample size reduces to
100 with m =2 and G =50. The results are given in the last two rows of

Table 3. The power is reduced as a result of a decrease in sample size.
But, the power of the test is still very high and reaches 1.00 for p, > 0.3.
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Table 3 Mean of the Chi-Square Statistic and Power” of the Test

mip, 00 01 02 03 04 05 06 07 0.8 09
(n = 200)
Mean of the Test Statistic
2 (.86 791 2483 5449 9999 167.59 26635 39656 609.82 977.42
10 096 3364 11835 21147 33892 497.64 70155 961.46 1347.85 2074.14
Empirical Power of the Test
2 0.02 0.69 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
10 0.04 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
Theoretical Power of the Test
2 0.05 070 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
10 0.05 0.99 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
{n=100)
Empirical Power of the Test
2 007 046 0% 100 100 100 100 100 1.00 1.00
Theoretical Power of the Test
2 0.05 0.42 (.95 1.00 1.00 1.00 1.00 1.00 1.00 1.00

*For p0=0.0 the number represents the probability for Type [ error rather than the power of the test.

m = Number of observations in each group

n = Total sample size

(II) Simulation 2

The purpose of the second simulation is to compare the results of a

confirmatory factor analysis using either S or % as the input matrix, while

the data are matrix normally distributed with intraclass dependence

structure. The analysis based on % corresponds to the proposed two-
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stage methodology. In this model £, = A ® A, +'F,. The two-factor

model includes six variables with three indicators for each factor. The
population factor loading matrix (A,), the factor covariance matrix

(D, ), and the residual matrix ('Y, ) are as follows.

2.1 0]
2.1 0
21 0
Ay =
0 2.1
0 2.1
0 2.1]
(1.0 0.3
@, =
0.3 1.0]
[4.50 0 0 0 0 |
0 4.59 0 0 0
0 0 4.59 0 0
¥, =
0 0 0 459 0 0
0 0 0 0 459 0
|0 0 0 0 0 4.59]

The two cases studied are the same as in Simulation 1. The sample
size of 200 is considered sufficient for the two-factor model studied.
Therefore, the transformation approach and the proposed two-stage
methodology may be applied. One hundred replications were performed.

The parameters of the factor model were estimated using the MLE option
in EQS (Bentler, 1989).
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Mean and Standard Deviation® of 1 and .}5
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Py

0.0

0.t

0.2

0.3

0.4

0.3

0.6

0.7

08

0.9

2.0744
(.245)

2.0689
(.244)

2.1479
(:239)

2.1415

(.233) -

2.0762
(207

2.0719
(.204)

2.1204
(:207)

21175
(201

2.1218
{.265)

2.1100
(.243)

2.1007
(257

2.0998
(:232)

2.1006
(.248)

2.0813
(:220)

2,1230
{.280)

2.1026
(.238)

2.1141
(.321)

2.1179
(259)

2.0330
(308)

2.0477
(243}

o0

20075
(215)

2.0917
(216

2.1264
(237)

2.1064
(224)

2.1194
(.309)

2.1174
(.262)

2.0398
(304)

2.0498
(214

2.0841
(.343)

2.0673
237}

2.1895
(428)

21233
(.242)

21013
(.425)

2.0726
(225)

2.0956
(.546)

20733
(216}

2.2128
(.634)

2.1435
(240}

2.0695
(705

20812
(245)

2.1551
(212

2.1502
(212)

2.0528
(239)

2.0515
(239

2.0939
(.242)

2.0941
(.233)

2.0814
{:258)

2.0807
(.255)

21126
(.276)

2.0996
(.264)

2.0808
(231}

2.0684
(219)

2.0826
(278)

2.0659
(.234)

2.0502
(307

2.0321
(.246)

2.1474
(2714

2.1268
(.232)

2.0941
(318)

2.0988
(.229)

20775
(.236)

2.0708
(.236)

2.1194
(201}

2.1064
(.198)

2.1685
(313)

2.1230
(257

2.1283
(312

21125
(224)

2.1258
(405}

2.1164
(271)

2.0398
(.446)

2.0445
(231}

2.0434
(.471)

2.0310
(213)

2.0803
{.598)

20514
(239}

2.0559
(.694}

2.1249
(237)

2.1565
(672)

2.1154
(.264)

2.0832
(.228)

2.0767
(.226)

2.0666
(:242)

2.0609
(:241)

2.1014
(229)

2,0016
{223)

2.0625
(267

2.0672
(.246)

2.1127
{:260)

2.1193
{.225)

2.0928
(.245)

2.0802
(.236)

2.1308
(.285)

2.1135
(:246)

2.0873
(.289)

2.0790
(.240)

2.1232
(.292)

2.1211
(239)

2.1492
(310

2.1389
(237
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Pa

0.0

0.1

02

03

0.4

0.5

0.6

0.7

0.8

0.9

10

2.1174
(.202)

21124
{201)

2.1109
(.226)

2.1062
(.2348)

2.0988
(.254)

2.0984
{:208)

21102
(.324)

2.1079
(232)

2.1098
(.382)

2.0880
(.235)

2.1314
(412)

2.1320
(222

2.097%
(416)

2.0930
(.258)

2.1218
(.527)

2.1199
(:255)

2.0499
(622)

2.1236
(278)

21340
(705)

2.0897
{270)

2.1056
(.236)

21009
(.236)

2.1110
(.240)

2.1044
(.237)

2.1182
(232)

21102
(.229)

2.0959
{.222)

2.0921
21

2.1151
(.241)

2.1143
(219

2.1337
(231)

2.1280
(:223)

2.1184
(.255)

2.1052
(221

2.0941
(284)

2.1084
(240}

2.0939
(.296)

2,0984
(.238)

2.1040
(.323)

2.1072
(.232)

™

2.1127
{:239)

2.1077
(.:238)

2.1259
(.238)

2.1184
(235)

2.0940
(.248)

2.1046
{:206)

2.0684
(.260)

2.0863
(207

2.0974
(.346)

2.0966
(.216)

2.0808
(317

2.0652
{.226)

2.1247
(491}

20829
(.286)

2.0797
(.549)

2.1090
(263)

2.0745
(.581)

2.1567
(241)

2151
(.764)

2.0861
(272)

2.0726
(:208)

2.0667
(.209)

2.1153
{225)

2.1114
(:223)

2.1014
(.233)

2.0874
{.238)

2.0556
(.227)

270501
(223)

2.1043
(241)

2.1145
(239)

2.1668
(:242)

2.1624
(.227)

2.0893
{-276)

2.0855
(216)

2.0912
(.288)

20970
(208)

2.0815
(.254)

2.0945
(232)

2.1110
(352)

2.1290
(256)

10

e

2.1406
(.209)

21343
(210)

2.1123
(251)

2.1084
(.230)

2.0715
(.296)

2.0678
(.230)

2.1383
(307

2.1182
(234)

2.1253
(.383}

21211
(229

2.1640
(.482)

2.1236
(228)

2.1106
(.481)

2.1091
(.260)

2.0342
(417

2.1043
(210)

2.1245
(.635)

21169
(273}

2.0540
(.680)

2.0942
(:269)
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Table 4 (continued)
Po 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
P m 1

$| 209018 21136 20935 21138 20801 21150 20592 2.0408 21189 2.1925
(247)  (228) (232) (259} (249) (254) (237) (269) (33D (316)

2
£ 120863 21044 20904 21175 20962 20910 2.0798 2.0524 2.1150 2.1543
(246} {(227) .(225) (244) (230) (234) (202) (231) (246) (25%)

161

§ | 21088 21148 20922 21241 2.1424 2.1256 2.1066 2.1020 2.0848 2.0693
(234} (237 (265) (29%) (343) (410) (513) (484) (636) (76D

16
£ 21017 29032 21041 21354 21345 20925 20703 20688 2.1226 2.0916
(235)  (219) (224) (237) (203) (238) (22D (220) (263) (280
S| 03062 02847 03067 03027 03026 02912 02977 02765 0.2969 03203
(083) (099) (095) (.094) (093) (098} (119) (108) (116) (113)

2
£ 103072 0281 03076 03033 03004 02919 0.2965 02720 0.2938 03118
(083} (097) (.094) (092) (086) (.083) (106) (.096) (083) (.090)

21

s| 02925 03139 02882 02979 03145 02864 02929 0.2828 03195 03124
(083) (088) (103} (1200 (138 (187) ( 187)  (229) (.259)  (330)

1¢
$ 102926 03137 02905 03092 0.3037 0.3073 0.2983 03031 03078 03217
(.083) (.086) (088) (092) {(083) (.096) (097) (096 (.0%96) (080}

85tandard deviation is in parentheses.

P = Parameter

m = Number of observations in each group

[ = Input Matrix used in the analysis
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Means and standard deviations of the six factor loading estimates and
the estimated factor covariance over the 100 replications are given in
Table 4. All the means of the parameter estimates are very close to the
true values regardiess of the population intraclass correlation, the number
of observations in each group, or the input covariance matrix used in the
analysis. As p, =0, the factor loading estimates from S are always
greater than those from % by approximately 0.005. This results from
different denominators used for S and ¥ : (n-1) for S and n for ¥.
Therefore, S equals approximately (200/99)% . Factor loadings estimates
from S are greater than factor loadings from $ approximately by a
multiplier of (200/199)".

When we look at standard deviations of the parameter estimates,
discrepancies among cases appear. The standard deviations of all factor
loading estimates show similar patterns. The standard deviations of
parameter estimates when § is used are usnally larger than those with £
being used, except for very small p,, say under 0.4 for Case I and under
0.2 for Case II. This result seems to indicate that the parameter estimates
using S have less empirical efficiency than using £. When ¥ is used, the
standard deviations of the parameter estimates have small differences
between the two cases. When S is used, the standard deviations in Case 1]
are larger than those in Case I, and the difference increases as 2o
increases. The results seem to indicate that although the mean parameter
estimates are close regardless of group size or the input matrix used, the
use of S leads to estimates with greater dispersion, especially for data
with large groups and high degrees of dependence, when the total sample |
size is held constant.
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Table 5 Frequency of Model Rejection

159

P | 00 01 02 03 04 05 06 07 08 09
m |

28| 3 6 10 9 13 23 32 35
28| 3 6 4 5 2 3 7 7 3
08| 6 12 16 43 57 75 8 94 98 98
10 2| 6 9 7 7 7 5 4 4 8 6

m = Number of observations in each group

I = Input matrix used in the analysis

Table 6 Mean and Standard Deviation® of the Chi-Square Statistic: 12(8)

g | 00 01 02 03 04 05 06 0.7 08 0.9
m 1 =
s 8526 8757 8224 8267 9938 8928 10741 12268 13.080 13.743
@42) (42) (¢43) @) @35 (¢4 (@6 (56 (64 (65
2
s 8520 8648 7939 7.687 8311 7.314 7550 7914 8260 7.683
42) (40) (43) (7 (41 (G4 (2 G99 @5 (I
g |7.695 9239 10708 14.812 18.339 25201 34.415 42673 55675 71.865
G8) (32 &7 (33 O (L4 (177 (200 @57 (18
10
$ (7734 8660 8.154 8659 8002 7.841 7938 7861 8375 8225
(3.8) (46 (37) (42) (44) (39 @l 45 (42 (46

2Standard deviation is in parentheses.

m = Number of observations in ¢ach group

I = Input matrix used in the analysis
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The frequency with which the two-factor model was rejected and the
mean and standard deviation of the chi-square test statistic are
summarized in Table 5 and Table 6. The expected frequency of rejection
is 5 with @ = .05. The test associated with the model has 8 degrees of
freedom. The mean and standard deviation of the statistic are expected to
be 8 and 4, respectively.

The model tends to be rejected too often when S is used as the input
matrix, especially in Case II. When £ is used, the frequency of model
rejection ranges from 2 to 9, and the chi-square test statistic behaves very
well with a mean close to 8 and a standard deviation close to 4 in both

cases. In Case I with S as the input matrix, the test performs fine for
Po < 0.4, while its mean and standard deviation begin to increase as

Py 20.4. In Case Il using S, the test did not perform well even with
Pp = 0.1, while the mean and standard deviation of the test statistic
increases dramatically as p, increases. The results indicate that the test
statistic is asymptotically distributed as a chi-square variate with 8
degrees of freedom if ¥ is used as the input matrix, but it does not have
an asymptotic chi-square distribution if S is used in the analysis.

(IIT) An Example

The sample consisted of 77 couples. The Bentler Psychological
Inventory (BPI) (Comrey, Backer, & Glaser, 1973), which asscsses 28
personality traits, was administered to the couples. An interested reader
may refer to Bentler and Newcomb (1978) for detailed description of the
sample, the data collection procedures, and the BPI. For demonstration
purpose, six personality traits were sclected based on husband-wife
correlations on the scales (Bentler & Newcomb, 1978) and the factor
structure among the personality traits (see, e.g. Stein, Newcomb, &
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Bentler, 1987). Deliberateness, Diligence, Orderliness, Law Abidance,
Liberalism, and Religious Commitment were chosen. The first three
reflect the factor of Conscientiousness and the rest reflect the factor of

Social Conformity.

A confirmatory two-factor analytic model with three indicators on
each factor is employed. Separate analyses were first conducted on
husband and wife samples to ensure the appropriateness of pooling
together the data. The fits in both samples are acceptable. For husbands,
£(8) = 10247, p=.248, the factor loading of liberalism on Social
Conformity was not significant. For wives, z*(8)=13.953, p=.083, and

all the parameter estimates were significant. The data on husbands and
wives were pooled together to form the couple sample of size 154. The
husband and wife in each couple are assumed to be dependent. The
sample size of 154 is considered at least moderate for the transformation

approach and the two-stage methodology to be used.

The model using S as the input matrix for the couple data cannot be
rejected; 32(8) = 12.079, p=.148 and all the parameter estimates are
significant. Means were subtracted from the original data prior to the
estimation of £. The Newton-Raphson iteration method was used to
obtain Zand p . p =0.193 and the LRT, asymptotically distributed as a
chi-square variate with 1 degree of freedom, yields 22.056, rejecting the
hypothesis of no dependence among husbands and wives on the six
personality traits. The two-factor model, using & as the input matrix,
cannot be rejected, either; 2%(8) = 12.039, p=.149, with all the
parameter estimates being significant. The parameter estimates and their

associated standard errors are summarized in Table 7. The high similarity
in the results coincides with the simulation results with 5 being close to
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0.2, since when p, = 0.2, the results for S and 3 in both simulation

studies are essentially the same for Case I with m = 2.

Table 7 Parameter Estimates and Associated Standard Errors for

the Couples Example

Input Matrix Used S 3

Parameter (6) ] S.E. [ S.E.
A, (DB 2.577 (.656) 2.875 (.676)
Ay (DG) 4,322 (.791) 4.201 (.769)
Ay, (OD) 4.029 (.772) 4.185 (.767)
Ay (LA 4.087 (678) 4.177 (.696)
Asy (LB) -2.041 (.632) -1.799 {.610)
A (RC) 3.878 (.785) - 3.647 (.755)
# 0511 (.122) 0.528 (.122)
y,, (DB) 33.463 (4.436) 34.936 (4.756)
¥,, (DG) 30.806 (6.293) 32.893 {(6.053)
¥y (OD) 33.245 (5.967) 32.849 (6.023)
v, (LA) 11.453 (4.873) 10.682 (5.14D)
vss (LB) 36.945 (4.500) 33.589 (4.269)
Wes (RC) 38.627 (6.198) 36.466 (5.718)

DB = Deliberateness
DG = Diligence

OD = Orderliness
LA = Law Abidance
LB = Liberalism

RC = Religicus Commitment
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VL. Discussion

The presented model has practical applications in many areas of
research. For example, an industrial psychologist may observe similarity
in working attitudes among employees under the same supervisor. This
similarity can be either the cause or the result of being assigned to the
same supervisor. Suppose the psychologist is interested in the
relationships among various working attitudes and intends to conduct a
factor analysis on these attitude scales. One immediate difficulty
encountered is the dependence existing among the employees under the
same supervisors. The current research offers one solution to this

problem.

The model is limited in some aspects. The limitations provide
directions for future research. First, the matrix normal distribution
assumes one dependence structure for all the variables. This constraint is
unacceptable in certain research. Second, the degree of dependence
among observations within groups are assumed to be identical. This
restriction can be relaxed to allow for different intraclass correlations. In
addition, other dependence structures can be studied for different
research designs. Stadje (1984) pointed out that not every dependence
structure yields consistent estimators. One has to prove the properties of
the estimators under different dependence structures.

Transformation is a useful approach for certain classes of
dependence structures. Suppose the dependence structure can be
decomposed as follows: R = KLK', with K known and L unknown
diagonal. The intraclass dependence studied is a special case of this
general model. If the eigenvectors of the dependence structure do not

depend on any parameters, the data can be transformed to independent,
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but not identically distributed vectors. The distributions of the vectors
depend on L and X . The proofs involving independent, but not
identically distributed observations, are usually simpler than those
involving dependent observations. Extra conditions are necessary for the
parameter estimates to have desirable statistical properties.

Another line of research involves dependent but non-normally
distributed data. The matrix elliptical distribution is one possibility, The
transformation approach should give uncorrelated and not identically
distributed vectors. Whether the transformed vectors are independent
depends on the nature of the matrix-valued distributions. More work is
needed.
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Appendix

Theorem 4.1.6 of Amemiya (1985) is used to prove the consistency and the
asymptotic normality of the maximum likelihood estimators &. Let L (6)denote

the function to be minimized over the parameter space ®@. The following
conditions have to be met.

(A) a“an / 8660 exists and is continuous in an open, convex
neighborhood of 8;-

(B) n_l(é?an | 6656') g converges to a finite positive definite matrix
n

A(8,) =lim En’’ (é‘an ! 650" )£9 in probability for any sequence 8’ such that
0

plim &, = g,.
© oL, /) —N[0,B(6,)], where B(6,)=lim En”

(aLn/aﬂ)go x(é’Ln/d?')go.

(DY ! L (&) converges to a nonstochastic function L (&) in probability

uniformly in & in an open neighborhood of 6,
(E) plim n'lﬁan ! 8650" exists and is continuous in a neighborhood of By
A transformation of the original data matrix X(n) is used to verify the stated
conditions.  Partition X(n) as (X‘l ,X'2 ,X'3 ,,..,X'g,__.)', where X, is the
observed n, X p data matrix for group g. The eigenvalues of each n, X n,
diagonal block of R (o) are [1+¢ n, —1)p] with multiplicity 1 and (1 - p ) with
muitiplicity (ng —1). Tet T, be a nonsingular n, X n, matrix with all the

elements in the first column equal to n;’ * and the remaining columns being

orthonormal without pand ¥ involved. Define Y, = T;;Xg- Then, all the rows

of Yg are independent. The first row ‘of cach Y g has a normal distribution with
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mean zero and covariance matrix [1 + (ng - 1) p1E. The remaining rows also
have a normal distribution with zero means and covariance matrix (1 - o) 2.

Denate (Y,,Y,.Ys,.,Yy,o) 38 Y@ Y (0)=(¥y» Yo Yzo -o¥np

yn1+1’ yn]+29 ynl+3""’ yn1+n2’ ynl+n2+1’ yn1+n2+2""’ ynl+n2+n3=“"

e ---). Eachy,isa column vector of order p.
1772 g

All the rows of Y are independently, but non-identically distributed.
Although there are theorems for consistemcy and asymptotic normality of the
MLE from independently but not identically distributed observations (e.g.,
Bradley & Gart, 1962; Hoadley, 1971; Philippou & Roussas, 1973), Amemiya's
theorems (1985) are applied to prove the consistency and asymptotic normality of
the MLE's of o and £ for the sake of simplicity.

Let us denote the y,, whose distribution is N(0,(1+(n, - 1)p)L). 8~ 1,
2,3,...,G,as u. Let the G X p matrix U represent the transpose of the collection
of all the u,’s. Note that (1+(n, — 1),9)'”2 u, ~N(0,Z) for every g. The
remaining y,’s are independently, identically, normally distributed with zero

means and covariance matrix (1 - ©)2. Denote the transpose of the collection of
all these y;’s as V, an (n - G) Xp matrix. The i.i.d. property plays an important

role in the demonstration of asymptotic properties of the MLE’s, pand T. The

negative Log-likelihood for Y, or equivalently for Uand V, is

L (Y, )=

G
-2'l{npln(27r)+p by ln[1+(ng—1)p]+p(n—G)ln(l—p)+nln]£|
g=1

g 1 'yl 1 ~ly 1
+ T ————u Ut —1r VvV IV )]
g:ll+(ng_1)p l_p
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The first and second derivatives of L () are as follows. The derivative

with respect to 3 refers only to the p* distinct elements in the matrix. The
product A ® B represents the right Kronecker product with typical element [a,]B].

L, (6 S -1 g -1 f el
-_— =2 Kp n Vee ¥ - ¥ ———Vec(Z ugugE )
o g=11+(ng—l)p
- Vec(Z 'vrvz )} ()
l-p
AL(O) G n, -1 1
=24p X ————p(n-G)——
p g=1 1+{(n,-Dp 1-p
-g ——u—m—ulﬁ_lu st rve v (3)
g=1 [+(n =Dl &7 "8 7 (1_p)7
3L (@
21 )=2*‘K; -n(Z7 @)
odc
G -1 -1 " el -1 N | -1
+2 ———x'ex U u X +X u uZ ®I)
g=1 l+(n,-1)p &
] I
+T—~—(E"®E'1V'VZ_1+2"'V'VE"®Z_[) K, “
-p
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AL (8 G n, -1 a0 -
gL, (9 )=2'1K; 3 £ - Vec(Z ]ugug'f. )
V7 or7/2] g=1 [1+(ng—])p]
- - vee(z'v've™ )} (5)
(1-p)
AL_(6) G T
_ n, —
—t=27{-p X £ } ~p(n-G) 3
p g=1 L1t(ng-Dp (1-p)
G m, -
+2 X u X +2

1 -1
v &V (6
P ETITIE a- } )

The definition of matrix K, is given in the text.
Verification of Condition (A)

Condition (A} is met trivially.
Verification of Condition (B}

It is to be shown that for any sequence g, = (o, ,0,) such that

plim 9; =a,, n’](éan/ 2059') ., converges to a finite positive definite

n

matrix A(6,) = lim En"' (&L, / 3059") 5 in probability.
[t}

Recall that (1+(n, —])Po)_m u,’s are iid., so are the rows of V.

Therefore, we have

p
V'Va(l-py)Z,s
n-G
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M
L
<
<
[ P |
1l
—_
|
>
Nt
3]
=

*

It can be shown that under the assumption | g — po’ <& <K?,

1 G 1 . P
- Z _'**—*llgu _)Eo.
Gg=1 l+(ng—])p

n

£

The results follow based on the above statements.

. -1 &AL B o
plim n (%53}9;22 K; (2, ®£,")K;

8L
=limE n! oo
5’0‘50’ 90

al é%L 1 _K k-1 .- .
n 1 - =_KP Z __“ﬁ:_zvec Enl Z ugug E’ll
Godp & 2n Tk>1[1+ (k- e ] {g:ng=k}
n

1

—————— K Vec(Z* lyryz*!
p K _
-2l ¥ fk—k—]—K;VecZE,l
k>1 1+(k-D)pg

_ 1 _
2 l(l—é’)l—_p-;KpVecEOl
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K -
=276 % £ k-1 1-9 k- S VecZy'.
Kk 1+(k-1}p - -

4 e 1 K k-1 _
En~'| ==2 =— X mk———~—KpVecEB1
& 2n i 1+(k-1)p

B n-G
2n(1-py)

2 2
So, lim En™’ o L, =plimn~' 9 Ly ,
docp )6, Jodp 0w

K;_, Vec Za'

-1 azLﬂ p K k-1 2 n-G 1
n 2 T T Z m, * - P .2
g )6 2y L1+k-Dpg, an  (1-p))

K 2 ,
+l z ———(k D tr I ugu, Z;,_l
n gaql+k-Dg L {gn, =k}

t—— g tr V'VEY
n(l—pn)
P K k-1 2
—-— 5 P Zf[———] ——(1-
2 k>lk 1+(k-1)py ( 5)]3(1 po)
K k-1 2 1
+5p X f|l———\"+(1=-8p—=
k>1k[1+(k‘1)90] ( ap(l—po)z

K _ _
=lp{5 5 fkl: k-1 ]2+ 1 (52
2 k>1 1+(k-Dpy (1-pp)

173
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=lmEn™' (2L, /3°) .
60

Therefore, n‘](ﬁanléao’?e')e, converges to A(§)=lim E
n

n-l(a an !/ 5658 4, in probability for any sequence 6; such that plim

g =,
A(Gy) =

[ IS k-1 1-6 ]

'eghky |5 Y ¢ - K, VecZy!
| Ko (Zo" ® 20k [ ko1 T+ (k—Dgy T—py | P 550
2
K k-1 ]z 1-6
Sym. 5y f +
i & l:k>1k(1+(k—l)ﬁ’0 (l—~p0)2]p |

The positive definiteness of A (8,) is to be shown next.

LetA(g)=2"'%r 0| & Kp' 0}
et ALG) {0 1] A(eo)[o 1

_ - , ] -
ez 63 f—X _1=e VecZ;!
| k>t 1tk=-Dgy 1-p

A(8y) =

S rfsgf[ k-1 ]2+ -9
S RS FRY Ty (-p)* ||

_ Kn A
Azl An |
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Since Ay = 261 ® zal is positive definite, |:\_(90)\ = ‘Kn‘ ‘Xzz - Azl
_71— J—
Ait At| (see, c.g. Graybill, 1983: 184), and A(8,) s positive definte if and

only if ‘K(Bo )\ > 0 (see, e.g., Basilevsky, 1983: 135).

— —_ — 11—
An —-AnAuAn

- R

_ - K —
|Z |ﬁ2p 5(1 é‘)2+25(1 5) y fk k-1
(1-p9) 1-o k>1 14+(k-Dgy

K k-1 K k-1
+8) X fil —— 28 ¥ f—— 2
k>1 ]+(k—1),00 k>1 1+(k'—1)p0
k-1 2 K k-1 2

K
Azp
> 8p|Zg Y| ———— | TR
| e EETUET Ko 1+ (k- Dpy

K K

-2 k-1 k-1

~op|Ze[ T | 3 i |70
ka1 {1+&k-Dp 51 1+(k=Dpy

So, |A(6,)] >0 and A(8,) > 0. Note that [Kg ﬂ is of full column

rank p*+ 1. Therefore, A(8,) is positive definite.
)
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Verification of Condition (C)
The first derivative of L with respect to 6 at 8, is rewritten before the

asymptotic distribution of (2L, / &0) P is shown.
(]

ZL K u,u,
(—“J =27'K < nVeczy' - (35! ® 35 ) vee 3 r —£&%
o j6 k>1 {g:ng=k}1+(k—1)p0

V'y
('@ Y (n-G v{«——_
20 O, Ve (n-G)(1-py)

= 2_1K,—,{n VecZ,' -G Vec )

-(Z;' @z
k

v MR

] ug“;
m, Vec| — I -3,
1 m, {8n,=k}1+(k-1)p,

-(n-G)(5;' ® %/ )Vec[——L - zo}— (n-G)Vec L'
(n-GX}(1-p,)

S . | -1 K 1 ugu:g
=-2 KP(Z0 @I ) X m, Vec|— z — -3,
k>1 m, {&gn=k}1+(k-1)p,

V'V J
+(n-G)Vee| —————_3_ |}
[(H~G)(1—Po) }

AL, 4] G n, -1 1
(—_n.Jg —_—-21 p Z l—g.—__p(n_G)._._
ap )% g=11+(ng-Dpy 1-p
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K -1 u,u,
— z mk—-k———-tr _l_ hA ..__gi.—_zo 2(‘)1
k51 1+k-Dgy || M ggn, =k}1+k-Dp

K k-1
-p X m———
Kk>1 1+(k-Dpgy

+ n-G tr[( VY z )E”' +p(n-G) ]
— n_
1-p, |\(=C)1-p) )" 1-p,

K _ 1 u,u
=2 Vec'):;1 Y my —-—-k—l-—Vec S r —2E 5,
ka1  1+{k-Dg m, {gn=k}1+(k-1)p,

n-G [ V'V ]
- Vec -Zg 1
I-p,  [(M-G)1=p,)

1(&1,“] | ! A D, Wh
_—— =-—| Fo =—-—— , ere
\/H a0 )t JH 2\/;

AL,

L 9 lg
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KP(251®251){(@ Jmy oy fmg Jn—G)@Ipz]

-1 -1 K-1 +n-G
Vee' 55! ceyJmg - ®1
ec 0[(\/_1+p0 ‘/_1+2p0 K1+ (K-1p 1—p0] pZL
and,
[ [ ! ]
u
Jmy Vec 1 % —gug——'ﬂo
My {gin, =2} 1+(2-Dpy
4Jm; Vec L z —ﬁgg——zo
m; {g:ng=3}1+(3‘1)90
I
1 ugUg
my Vec| — z ——-3I,
K [mK {g:ngzK}l""(K"l)PO }
— 'V
n-G Vec[—-L——Z ]
] (n~G)(1-g) ° ]

Allthe u S and rows of V are mutually independent. For every k, \/m, Vec

"gug

1
I T —E, | > N[0,2M,(Z, ® % )], where M\, =
’:mk {En =k} 1+ (k- 1)p, 0] PR i

K, K, isa p’ x p’ symmetric idempotent matrix (see, e.g., Browne, 1974). And
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Vl
n-G Vec [—-V— -z D:I has the same asymptotic distribution.
(n-G)(1-py)

The joint asymptotic distribution of D is N[{), I ® 2M_ (£,®%, )]-

gL
It can be shown through matrix algebra that 1 it is
vn\ a9 )b

asymptotically distributed as N[0, B(8,)], and B( g,) is identical to A(4,).
LI

Verification of Condition (D)
Theorem 4.2.2 of Amemiya (1985) is used to show condition (D) on
uniform convergence of the likelihood function.

Define ®, a compact subset of q-dimensional Euclidean space, as

e= {0=(Z,p): Al LS4l ,,—e5psy, for 0< A, <A,, and some
g<Kland y <1}. Note @ @. Leth (y,.0)=Inf,(y,,6)-Eg In
f(y,,d), where f(y ,8) is the normal density function for y,. Note

Egh,(y;,0) =0. It is to be shown that for every i, there exists some & > 0
0

1+& n
suchthatE  Sup_ ‘h,(y,,g)’ < oo, Then, n™ ! 3 h;(y;, ) converges to
fc®d Lo i=1

0 in probability uniformly in # € ® according to Theorem 4.2.2 of Amemiya
(1985). So n”’ L (#) convergestoa nonstochastic function L( &) in probability
uniformly in & in an open neighborhood of 6,.

Let n, =0.

g-1
Fori = kz n, +1,whereg=1,2,...,G,
=0
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1 ' -1
b, (y,,6) = —————t{y,y, ~[1+(n, - 1)p, ], 12"

Otherwise,
1 ' 4
h;(yf ,0) =1_—tr{yr'y1‘ _(1 _PO)ZO}E 4
-P

g-1
Let us first discuss the case where i = ¥, n, +1,withg=1,2, .., G.
k=0

N0t60<——1-—<](.
1+(ng—1)p

b v, 8] < Kjerty,y, (1 +(n, -1y 1Z,327|
=K[y,T™y, -[1+(n, ~ D, lir(Z, ™).
If y, 27y, 2[1+(n, - Do, Ir(Z,27"),
b, (y,.0)] <Ky,z7y,
= K(Z"y, rzg 27z (351 2y,).

Let z, =3;"%y, 2. ~ N(0,[1 +(n, -1, I1,).

Because 4,1 <Z< 4,1, we have ,1(23’2):‘12(‘)’2) < ;jzl/lmax (Z,) =M, say.

112 ¢-1ali2
0 T7'Ey? <M,

So, T
Therefore, |h, (y,,0)| < Kz, (MI »)z,

=KM(z;z,).

2 .
Sup  |h;(y,,0)| <K’M?(zz,)".
00
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E Sw | (v,,0 <K’M’E(zz,)
6
<3p K M2 [1+(n, —1)p, ]’ < oo forevery g.
It y, 27y, <[1+(n, - Dpy Jr(Z,E7),
|h1(y119)| <K[1+(ng—1)p0]tr(20)3—1)
<pKM[1+(K-1)pg]< = forevery g.
g-1

Therefore, when 7 = kZO n, +1, withg=1,2, .G, there exists some § > 0

such that E Sup |h, (y,, 9)|”5< 0,

(=0

A similar relationship can be derived for other h,(y,;,#8)s, noting

K < ! < L < oc, Details are given in Weng (1990). Therefore, for
K+l l=-p 1=y
every i, there exists sone & >0 such that E Sup |hf. (yf_,g)|1+5< oo . This
60
completes the proof. (I

Verification of Condition (E)

limt L _ plim k- ezl
plim——— = plim— -n
ndode T an 7
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K 1 1 -1 : -1 -1 ' -1 -1
+3 —[E2T Rz Z u,u, |Z +Z Z u,u, I @I
k>l]+(k1)p|: ({g:ng=k} & gJ tgn =k} &%

1 ~
+1—(2‘1 erlvivitizlvivetes) ik,
-p

=27k, {-(z"'®z™)

K 1+(k-1
g DR g py s s s e £
k>1 ° 1+(k-Dp

1~ _ B _ _ _ _ ;)
+(1—5)T«@(z ' =l liryrle ThiK;

2

. 12°L 1 __| K k-1 - c e

plim— I =pllrn—Kp > ———— Vec| I ! 2 ugl, p>utll B
n Jdoép 2n k>1[1+{k - 1)p] {g:ngzk}

ST vee(z7'v've T
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- (k= DI1+ (k= Doy 1=pp |omv oyl gl
=2 Ns —(1- 60— k- vec(z g,z .
{ S e-npP é7(1—;9)2} g ’

K _
0 plim—{-p ¥ m [—kl—]z—p(n—a)

2n| Ty FlLlHk-Dp (1-p)

K (k-1

3 wu, =7
k>1[1+(k - 1}p] {g:ng =k}

£7g

2 r vvg™

(1-p°

=25 Iéf[L] —(1-6)
P k- p(l_ o)

+{52 (k= D[Le (=Dl l—pOB}tr -y
K1 (k= 1P (1-9)

Since plim n'léan / 5679' exists and is continuous for every # € @, Condition
(E) is satisfied. ]




